skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "MORENO, AGUSTIN"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract In this paper, we identify the five dimensional analogue of the finite energy foliations introduced by Hofer–Wysocki–Zehnder for the study of three dimensional Reeb flows, and show that these exist for the spatial circular restricted three-body problem (SCR3BP) whenever the planar dynamics is convex. We introduce the notion of a fiberwise-recurrent point, which may be thought of as a symplectic version of the leafwise intersections introduced by Moser, and show that they exist in abundance for a perturbative regime in the SCR3BP. We then use this foliation to induce a Reeb flow on the standard 3-sphere, via the use of pseudo-holomorphic curves, to be understood as the best approximation of the given dynamics that preserves the foliation. We discuss examples, further geometric structures, and speculate on possible applications. 
    more » « less
  2. Abstract In this article, for Hamiltonian systems with two degrees of freedom, we study doubly symmetric periodic orbits, i.e., those which are symmetric with respect to two (distinct) commuting antisymplectic involutions. These are ubiquitous in several problems of interest in mechanics. We show that, in dimension four, doubly symmetric periodic orbits cannot be negative hyperbolic. This has a number of consequences: (1) All covers of doubly symmetric orbits are good , in the sense of Symplectic Field Theory (Eliashberg et al. Geom Funct Anal Special Volume Part II:560–673, 2000); (2) a non-degenerate doubly symmetric orbit is stable if and only if its CZ-index is odd; (3) a doubly symmetric orbit does not undergo period doubling bifurcation; and (4) there is always a stable orbit in any collection of doubly symmetric periodic orbits with negative SFT-Euler characteristic (as coined in Frauenfelder et al. in Symplectic methods in the numerical search of orbits in real-life planetary systems. Preprint arXiv:2206.00627 ). The above results follow from: (5) A symmetric orbit is negative hyperbolic if and only its two B - signs (introduced in Frauenfelder and Moreno 2021) differ. 
    more » « less
  3. Abstract Given a contact structure on a manifold V together with a supporting open book decomposition, Bourgeois gave an explicit construction of a contact structure on $$V \times {\mathbb {T}}^2$$ V × T 2 . We prove that all such structures are universally tight in dimension 5, independent of whether the original contact manifold is itself tight or overtwisted. In arbitrary dimensions, we provide obstructions to the existence of strong symplectic fillings of Bourgeois manifolds. This gives a broad class of new examples of weakly but not strongly fillable contact 5-manifolds, as well as the first examples of weakly but not strongly fillable contact structures in all odd dimensions. These obstructions are particular instances of more general obstructions for $${\mathbb {S}}^1$$ S 1 -invariant contact manifolds. We also obtain a classification result in arbitrary dimensions, namely that the unit cotangent bundle of the n -torus has a unique symplectically aspherical strong filling up to diffeomorphism. 
    more » « less
  4. We propose a contact-topological approach to the spatial circular restricted three-body problem, for energies below and slightly above the first critical energy value. We prove the existence of a circle family of global hypersurfaces of section for the regularized dynamics. Below the first critical value, these hypersurfaces are diffeomorphic to the unit disk cotangent bundle of the 2-sphere, and they carry symplectic forms on their interior, which are each deformation equivalent to the standard symplectic form. The boundary of the global hypersurface of section is an invariant set for the regularized dynamics that is equal to a level set of the Hamiltonian describing the regularized planar problem. The first return map is Hamiltonian, and restricts to the boundary as the time-1 map of a positive reparametrization of the Reeb flow in the planar problem. This construction holds for any choice of mass ratio, and is therefore non-perturbative. We illustrate the technique in the completely integrable case of the rotating Kepler problem, where the return map can be studied explicitly. 
    more » « less